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LETTER TO THE EDITOR

A solvable model of interacting fermions in two dimensions∗

B Sriram Shastry†§ and Diptiman Sen‖
† Department of Physics, Indian Institute of Science, Bangalore 560012, India
‡ Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560012, India

Received 21 January 1999

Abstract. We introduce and study an exactly solvable model of several species of fermions
in which particles interact pairwise through a mutual magnetic field; the interaction only operates
between particles belonging to different species. After an unitary transformation, the model reduces
to one in which each particle sees a magnetic field which depends on the total numbers of particles
of all the other species; this may be viewed as the mean-field model for a class of anyonic theories.
Our model is invariant under charge conjugationC and the productPT (parity and time reversal).
For the special case of two species, we examine various properties of this system, such as the Hall
conductivity, the wavefunction overlap arising from the transfer of one particle from one species
to another and the one-particle off-diagonal density matrix. Our model is a generalization of a
recently introduced solvable model in one dimension.

Exactly solvable models of interacting particles have often been very useful in illustrating some
general concepts in many-body physics. While there is a large variety of such models available
in one dimension, many of which fall into the class of Tomonaga–Luttinger liquids [1], there
are few models known in two dimensions which are completely solvable. In this paper, we
introduce and study a model of several species of fermions which interact with each other
through a magnetic field term which depends on the coordinates of pairs of particles belonging
to two different species. The model can be solved by a unitary transformation which reduces
it to a model of fermions in a magnetic field which depends on the total numbers of fermions
belonging to the other species. Our model is a direct generalization of the recent reinterpretation
of the well known model of Luttinger in one dimension [2]. The one-dimensional model also
has pairwise ‘gauge’ interactions depending on the coordinates of the particles; the model is
exactly solvable because the interactions can be unitarily gauged away at the cost of modifying
the boundary conditions in a non-trivial way. As we will see, in our two-dimensional model
the interactions cannot be gauged away in the bulk of the system; the unitary transformation
leaves behind a static magnetic field.

Let us considerν species of fermions in two dimensions (say, thex̂–ŷ plane), with the
charge and number of fermions of typeα being denoted byqα andNα respectively. The
coordinates of the particles will be denoted byEri,α, where 16 i 6 Nα and 16 α 6 ν. We
will consider the Hamiltonian

H =
∑
i,α

1

2mα

(
Epi,α − qα

c
EAi,α − qα

c
EAi,α
)2

EAi,α = 1
2B0ẑ× Eri,α

(1)
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wherec is the velocity of light. B0ẑ is an external magnetic field pointing in a direction
perpendicular to the two-dimensional plane; we have chosen the symmetric gauge for its
vector potentialEAi,α in order to explicitly maintain invariance under rotations of the plane.
The other vector potentialEAi,α arises from two-body interactions; it will be taken to have the
following form which is natural in two dimensions [3],

EAi,α = ηα
∑
jβ

ξαβ ẑ× (Eri,α − Erj,β) (2)

whereηα and ξαβ are some constants to be fixed below. Note that the Hamiltonian (1) is
invariant under translations in the plane.

We may now perform an unitary transformation on the Hamiltonian of the form

H̃ = UHU−1

U = exp

[
− iq

h̄c

∑
α<β

∑
i,j

ξαβ ẑ · Eri,α × Erj,β
]
.

(3)

whereq is the charge of an electron. (We note that the phase factor inU only depends on the
total coordinatesERα =

∑
i Eri,α of the various species of fermions.) This gives the transformed

Hamiltonian

H̃ =
∑
i,α

1

2mα

(
Epi,α − qα

c
EAi,α − qα

c
Eai,α
)2

Eai,α = 1
2

(
ηα
∑
β 6=α

ξαβ Nβ

)
ẑ× Eri,α

(4)

provided that

ξαβ = −ξβα and qαηα = q for all α. (5)

The antisymmetry ofξαβ implies that the two-particle magnetic interaction can only act between
particles belonging to two different species.

It is interesting to consider the effects of some discrete symmetries such as time reversal
(T ), parity (P ) and charge conjugation (C). Let us first set the external magnetic fieldB0 = 0.
UnderT , the wavefunctions and factors ofi are complex conjugated (thus, the momentum
operatorsEpi,α → −Epi,α) and the time coordinatet → −t ; the space coordinatesx, y and the
various parametersqα, ηα andξαβ remain unchanged. UnderP , one of the space coordinates,
say,x → −x, while y, t and all the parameters remain unchanged. We therefore see that
the model is not invariant underP andT separately, but it is invariant under the combined
operationPT . Under charge conjugation, we demand thatqα → −qα and ξαβ → −ξαβ ,
while ηα and the space-time coordinates remain unchanged; thus the model is invariant under
C and therefore underCPT . Finally, if the external magnetic fieldB0 is nonzero, the model is
again invariant underC andPT , but not underP andT separately; this is because a magnetic
field (which must be produced by some external currents) changes sign underC, P andT
separately.

It may be useful to point out here that our model has some resemblance to the mean-
field theory of several species of anyons. In the usual theories of anyons, the wavefunction is
assumed to pick up a phaseθij whenever particlei is taken in an anticlockwise loop around
particlej , no matter what the size and shape of the loop is [4]. This is often modelled by
treating each particle as a point-like composite of charge and magnetic flux; when one particle
encircles another, the wavefunction picks up an Aharonov–Bohm phase. In understanding the
many-body properties of such a system, a fruitful approach has been to begin with a mean-field
theory in which the magnetic flux of each anyon is smeared out over the entire plane [5, 6].
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Thus, each particle sees a magnetic field proportional to the average density of particles, which
is similar to our situation. Of course, the analysis of anyons then goes beyond mean-field theory
to study the fluctuations about the average magnetic field, while our simplified model has no
fluctuations. It is worth remarking that our model has no counterpart for the most popular
anyon model which has only one species; we need a a minimum of two species.

To continue, the total magnetic field seen by a particle of typeα in our model is given by
Bαẑ, where

Bα = B0 + ηα
∑
β 6=α

ξαβNβ. (6)

In order to have a well-defined thermodynamic limitNα →∞, theξαβ must be taken to scale
as 1/A, whereA is the area of the system; thus the magnetic field strengthsBα in (6) remain
of order 1 asA → ∞ with the densitiesρα = Nα/A held fixed. We then expect Landau
levels to form for each species [7]. It is well known that each Landau level has a macroscopic
degeneracy equal toA|qαBα|/(2πh̄c). The filling fraction of fermions of typeα is given by

fα = ρα 2πh̄c

|qαBα| . (7)

If fα is not equal to an integer for one or more values ofα, the ground state of the system is
highly degenerate.

For computational purposes, it is convenient to break this degeneracy in one of two ways.
We can either add a simple harmonic confining potential to the Hamiltonians (1) and (4) of the
form

Hsh = k

2

∑
i,α

Er2
i,α (8)

and take the limitk → 0 at the end of the calculation, or we can simply impose a hard-wall
boundary condition at some large radiusR. Analytically, it is easier to work with the first
method since the problem of free particles in a combination of an uniform magnetic field
and a simple harmonic confinement is exactly solvable as we now discuss. (Let us drop the
species labelα in the rest of this paragraph and in the next). Since the problem has rotational
symmetry, the energies and wavefunctions are specified by two quantum numbers, a radial
quantum numbern = 0, 1, 2, . . . and the angular momentuml = 0,±1,±2, . . . . If only a
magnetic field is present (with, say, the productqB being positive), the single-particle states
have energies which only depend on the integern which counts the number of nodes in the
radial direction; thus

En,l = h̄ωc(n + 1
2)

ωc = qB

mc
.

(9)

In the lowest Landau level (LLL),n = 0 while l can only take non-negative values; all states
have the energyE0,l = h̄ωc/2 independent ofl. The normalized wavefunctions in the LLL
are given in terms of the complex coordinatesz = x + iy andz? = x − iy as

ψ0,l(z, z
?) =

(
qB

2h̄c

)(l+1)/2
zl√
l!π

exp

[
− qB

4h̄c
zz?
]

(10)

where l = 0, 1, 2, . . . . The amplitudes of these wavefunctions are peaked on circles of
various radii centred about the originEr = E0; the radii of these ‘ring’ states are given by
rl =
√

2lh̄c/(qB). (If qB is negative, the LLL wavefunctions are given by equation (10) with
z replaced byz?. Then the angular momentum only takes non-positive values.)
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If we now add a weak simple harmonic potentialmω2Er2/2 for all the particles, the energies
of the ring states in the LLL become

El = h̄

2

[√
ω2
c + 4ω2 + (

√
ω2
c + 4ω2 − ωc)|l|

]
(11)

which increase from the origin outwards as|l| increases from zero. Therefore, in the many-
particle ground state, the fermions fill up the individual ring states from the origin outwards.
In the following discussion, we assume this order of filling in the LLL, without explicitly
mentioning the simple harmonic confinement which justifies it.

We now specialize to the case of two species of fermions to illustrate some properties of our
model. Let us take the masses equal tom for both species, the charges equal toq1 = q2 = q
(thus,η1 = η2 = 1), and the numbers of particles equal toN1 andN2 for the two species
respectively. We also set

ξ12 = −ξ21 = γ

A
(12)

whereγ is a number of order 1. After the unitary transformation in (3), the two species see
uniform magnetic fields equal to

B1 = B0 + γ
N2

A
and B2 = B0 − γ N1

A
(13)

respectively. If the number of particlesN1 = N2, the model is invariant under the exchange
of the species labels 1↔ 2 andγ →−γ ; this is in addition to the discrete symmetriesC and
PT discussed in general before.

One of the properties of interest for such a model is the Hall conductivity. In the absence of
impurities and any other interactions (such as Coulomb repulsion), what is the Hall conductivity
of this system if the filling fractionsf1 andf2 are both integers? It is fairly easy to see that the
answer is

σxy = [f1 sign(B1) + f2 sign(B2)]
q2

2πh̄
. (14)

This can be derived from the usual formula for the frequency-dependent conductivity

σxy = i

ω

∑
a 6=0

[ 〈0|Jx |a〉〈a|Jy |0〉
ω − Ea +E0 + iη

− 〈0|Jy |a〉〈a|Jx |0〉
ω +Ea − E0 + iη

]
(15)

where|0〉 is the ground state of the many-body system, and the sum over|a〉 runs over all the
excited states;η is an infinitesimal positive number. The currentEJ is given by the second-
quantized expression

EJ = −c δH
δ EA =

q

2mi

2∑
α=1

∫
d2Er

[
9†
α

(
Ep − qα

c
EA− qα

c
EAα
)
9α − Hermitian conjugate

]
. (16)

If we now perform the unitary transformation in (3) on both the current and the states, then
(16) reduces to the conventional expression for the current operator of two species of fermions
placed in the magnetic fields given by (13). Equation (15) can then be evaluated in the usual way
[5, 6]; in the zero frequency limit, we obtain the expression given in (14). The Hall conductivity
will remain unchanged if we make our model more realistic by including Coulomb repulsion
between the particles.

Another object of interest in this model is the matrix element of the ‘hopping’ operator

M(Er) = c†
1(Er)c2(Er) (17)

between the ground state of the system with(N1, N2) particles and all possible states of the
system with(N1 + 1, N2 − 1) particles. (The calculation of this overlap is of interest in
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connection with the ‘orthogonality’ catastrophe which is known to occur in Luttinger liquids
in one dimension. It may also be useful in the context of a two-layer quantum Hall system
in which electrons can hop from one layer to the other.) Since our original Hamiltonian (1)
is translation invariant, it is sufficient to compute the matrix element ofM(E0) located at the
origin. This simplifies the computation for the following reason. In a second quantized form,
the annihilation operator for any species is given by

c(Er) =
∑
n,l

ψn,l(Er)cn,l (18)

where the sum runs over all one-particle states(n, l) with wavefunctionsψn,l , and cn,l
annihilates a fermion in the state(n, l). Since only the zero angular momentum states have
non-vanishing wavefunctions at the origin,c(E0) gets a contribution from onlyl = 0 but all
possible radial quantum numbersn. Thus

c(E0) =
∑
n

ψn,0(E0)cn,0 (19)

where

|ψn,0(E0)|2 = qB

2πh̄c
(20)

for all n. (This follows from the normalization of the Laguerre polynomials given in [7, 8].)
We can now compute the frequency-dependent hopping function

M(ω) =
∑
a

|〈a;N1 + 1, N2 − 1|M(E0)|0;N1, N2〉|22πδ(h̄ω − Ea +E0) (21)

where |0;N1, N2〉 denotes the ground state of the system with(N1, N2) particles, while
|a;N1 + 1, N2 − 1〉 denotes all possible states of the system with(N1 + 1, N2 − 1) particles.

For simplicity, let us consider the case in which the filling fractionsf1 andf2 are both
less than one, andN1 = N2 = N . Then the ground state|0;N,N〉 is one which the both
the type-1 and type-2 particles occupy the LLL states withn = 0 and angular momentum
l = 0, 1, 2, . . . , N − 1. Upon acting on this state with the operatorM(E0) in (17), we get a
state|a;N + 1, N − 1〉 in which a type-2 particle has been removed from the state(0, 0), and
a type-1 particle has been added to the state(n, 0), wheren 6= 0 due to the Pauli exclusion
principle. Hence the energy difference is

Ea − E0 = h̄q

mc

[(
n +

1

2

)
|B1| − 1

2
|B2|

]
(22)

wheren = 1, 2, 3, . . . . This gives the locations of theδ-functions on the right-hand side of
(21). We now have to find the weights. We can use (20) to show that for species 2,

|〈a2;N − 1|c2(E0)|0;N〉|2 = q|B2|
2πh̄c

(23)

where|a2;N −1〉 represents the state in which a particle of type 2 has been removed from the
state(0, 0). Similarly, for species 1, we have

|〈a1;N + 1|c†
1(
E0)|0;N〉|2 = q|B1|

2πh̄c
(24)

where|a1;N + 1〉 represents the state in which a particle of type 1 has been added to the state
(n, 0)wheren > 1. To use the results (23) and (24) for evaluating the matrix elements in (21),
we now perform the unitary transformation in (3). At this point, we have to worry about two
things. Firstly, theN + 1 particles of type 1 in the states|a〉 see a slightly different magnetic
field than theN particles of type 1 in the state|0〉, since the number of type-2 particles differ
by one in the two cases. However, the difference in the two magnetic fields is of order 1/A
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which vanishes in the thermodynamic limit. Thus, the wavefunctions in the two cases look
almost the same since the magnetic fieldB appearing in (10) differs only slightly in the two
cases; so when we use equation (24), it does not matter much if we setN2 equal toN orN −1
to determine the value ofB1 given by equation (13). Secondly, we have to worry about the
phase factor appearing inU which depends on the total coordinatesERN,α =

∑
i Eri,α; recall

equation (3). At this point, another advantage of locating the hopping operator at the origin
Er = E0 becomes apparent. Namely, we see that the phase factorsẑ · ERN+1,1× ERN−1,2 appearing
in the states|a〉 cancels with the phase factorẑ · ERN,1× ERN,2 appearing in the state|0〉, since
the two states only differ by the addition or removal of particles at the origin; this does not
change the total coordinateERα of either species. Putting equations (22)–(24) together, we see
that the hopping function is given by

M(ω) = q2|B1B2|
(2πh̄c)2

∞∑
n=1

2πδ

(
h̄ω − h̄q

mc

(
n +

1

2

)
|B1| + h̄q

2mc
|B2|

)
. (25)

We thus get an infinite sequence ofδ-functions with equal weight.
Finally, let us compute the one-particle off-diagonal density matrix for, say, species 1. We

assume again thatN1 = N2 = N and both the filling fractionsfα are less than one. We have
to evaluate

ρ(Er, Er ′) =
∫ N∏

i=2

d2Eri,1
N∏
j=1

d2Erj,2ψ?(Er, Er2,1, . . . , ErN,1; Er1,2, Er2,2, . . . , ErN,2)

×ψ(Er ′, Er2,1, . . . , ErN,1; Er1,2, Er2,2, . . . , ErN,2) (26)

where we assume that the particles fill up the statesl = 0, 1, 2, . . . , N in the LLL. We again
perform the unitary transformation (3). The integrand in (26) then becomes the product of a
phase factor

exp

[
iqh̄γ

cA
ẑ · (Er − Er ′)× ER2

]
(27)

(where ER2 =
∑

j Erj,2 and we have used equation (12)), four Van der Monde determinants
which typically look like

∏
k<l(zk,α− zl,α) and its complex conjugate for both the species, and

the Gaussian factor

exp

[
− q|B1|

4h̄c

(
Er2 + Er ′2 + 2

N∑
i=2

Er2
i,1

)
− q|B2|

2h̄c

N∑
j=1

Er2
j,2

]
. (28)

Since the Van der Monde determinants are invariant under translations, we can immediately
integrate over theN−1 independent relative coordinates (i.e.,Erk,2−Erl,2) of the type-2 particles.
The total coordinateER2 of species 2 then remains in the form

exp

[
iqh̄γ

cA
ẑ · (Er − Er ′)× ER2 − q|B2|

2h̄c

ER2
2

N

]
. (29)

When we integrate overER2, we get a Gaussian of the form exp[−d(Er − Er ′)2/A], whered is a
number of order one. In the thermodynamic limit, we can set this equal to one since we can
assume that the separation|Er − Er ′| is much smaller than the size of the system. We are now
left with only the coordinatesEri,1, with i = 2, 3, . . . , N , to integrate over. Finally, we get

ρ(Er, Er ′) = 1

N

N∑
l=0

(
qB1

2h̄c

)l+1
(zz′?)l

l!π
exp

[
−qB1

4h̄c
(zz? + z′z′?)

]
(30)
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where we have assumed thatqB1 is positive. If we now take the limitN →∞, we find that
the off-diagonal density matrix is the product of a Gaussian times a phase,

ρ(Er, Er ′) ∼ qB1

2πh̄c
exp

[
−qB1

4h̄c
|z− z′|2 − qB1

4h̄c
(z?z′ − zz′?)

]
(31)

which is the usual result for a single species of particles in the LLL.
To summarize, we have introduced and solved a two-dimensional multi-species fermi

system with mutual interactions of a particular type. The interaction can be converted via an
unitary transformation into a static magnetic field whose strength depends on the density of
particles. The model is quite simple; after all, the exact solvability of a Hamiltonian which
has a quadratic form should surprise no one. Yet the physics of the model is quite interesting.
We end up with a strongly non-fermi liquid system; further, the elements of the orthogonality
catastrophe, i.e., a readjusting ofall states in response to the addition of a single particle, also
carry over from the one-dimensional physics of the Luttinger model. Our model may thus
serve some purpose in understanding the physics of non-fermi liquids in higher dimensions.
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